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Imagine standing near a busy highway try-

ing to get the attention of a friend on the other 

side. How could you signal your friend? You 

might try shouting first. You could throw some-

thing across the highway, you could make a loud 

noise by banging two rocks together, you could 

shine a flashlight at your friend, and so on.

Signals can be sent by one of two methods. 

One method includes ways in which mate-

rial moves from you to your friend—such as 

throwing a pebble. The other method includes 

ways in which energy moves across the high-

way without any accompanying material. This 

second method represents phenomena that we 

usually call waves.

The study of waves has greatly expanded 

the physics world view. Surprisingly, however, 

waves do not have a strong position in our 

commonsense world view. It’s not that wave 

phenomena are uncommon, but rather that 

many times the wave nature of the phenom-

ena is not recognized. Plucking a guitar string, 

for example, doesn’t usually invoke images of 

waves traveling up and down the string. But 

that is what happens. The buzzing of a bee prob-

ably does not generate thoughts of waves either. We 

will discover interesting examples of waves in unex-

pected situations.

Waves are certainly common enough—we grow up play-

ing with water waves and listening to sound waves—but 

most of us do not have a good intuitive understanding of 

the behavior of waves. Ask yourself a few questions about 

waves: Do they bounce off materials? When two waves 

meet, do they crash like billiard balls? Is it meaningful to 

Sculling on Lake Powell creates interesting wave patterns.

Waves—Something 
Else That Moves
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302 The Big Picture

speak of the speed of a wave? When speaking of mate-

rial objects, the answers to such questions seem obvious, 

but when speaking of waves, the answers require closer 

examination.

We study waves for two reasons. First, because they 

are there; studying waves adds to our understanding of 

how the world works. The second reason is less obvious. 

As we delve deeper and deeper into the workings of the 

world, we reach limits beyond which we cannot observe 

phenomena directly. Even the best imaginable magnifying 

instrument is too weak to allow direct observation of the 

subatomic worlds. Our search to understand these worlds 

yields evidence only by indirect methods. We must use our 

common experiences to model a world we cannot see. In 

many cases the modeling process can be reduced to ask-

ing whether the phenomenon acts like a wave or acts like 

a particle.

To answer the question of whether something acts like 

a wave or a particle, we must expand our commonsense 

world view to include waves. After you study such com-

mon waves as sound waves, we hope you will be ready to 

“hear” the harmony of the subatomic world.

It’s not that wave phenomena are uncommon, but 

rather that many times the wave nature of the phenomena 

is not recognized.
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15
Vibrations 
and Waves

uWater drops falling onto the surface of water produce waves that move outward 
as expanding rings. But what is moving outward? Does the wave disturbance carry 
energy or momentum? What happens when two waves meet? How does wave motion 
differ from particle motion?

(See page 323 for the answer to this question.)

Circular waves are formed by falling water drops.
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304 Chapter 15 Vibrations and Waves

IF you stretch or compress a spring and let go, it vibrates. If you pull a pen-

dulum off to one side and let it go, it oscillates back and forth. Such vibra-

tions and oscillations are common motions in our everyday world. If these 

vibrations and oscillations affect surrounding objects or matter, a wave is often 

generated. Ripples on a pond, musical sounds, laser light, exploding stars, and 

even electrons all display some aspects of wave behavior.

 Waves are responsible for many of our everyday experiences. Fortunately, 

nature has been kind; all waves have many of the same characteristics. Once 

you understand one type, you will know a great deal about the others.

 We begin our study with simple vibrations and oscillations. We then exam-

ine common waves, such as waves on a rope, water waves, and sound waves, 

and later progress to more exotic examples, such as radio, television, light, 

and even “matter” waves.

Simple Vibrations

If you distort an object and release it, elastic forces restore the object to its 

original shape. In returning to its original shape, however, the inertia of the 

displaced portion of the object causes it to overshoot, creating a distortion in 

the opposite direction. Again, restoring forces attempt to return the object 

to its original shape and, again, the object overshoots. This back-and-forth 

motion is what we commonly call a vibration, or an oscillation. For all practi-

cal purposes, the labels are interchangeable.

 A mass hanging on the end of a vertical spring exhibits a simple vibrational 

motion. Initially, the mass stretches the spring so that it hangs at the position 

where its weight is just balanced by the upward force of the spring, as shown 

in Figure 15-1. This position—called the equilibrium position—is analogous 

to the undistorted shape of an object. If you pull downward (or push upward) 

on the mass, you feel a force in the opposite direction. The size of this restor-

ing force increases with the amount of stretch or compression you apply. If 

the applied force is not too large, the restoring force is proportional to the 

distance the mass is moved from its equilibrium position. If the force is too 

large, the spring will be permanently stretched and not return to its original 

length. In the discussion that follows, we assume that the stretch of the system 

is not too large. Many natural phenomena obey this condition, so little is lost 

by imposing this constraint.

 Imagine pulling the mass down a short distance and releasing it as shown 

in Figure 15-2(a). Initially, a net upward force accelerates the mass upward. 

As the mass moves upward, the net force decreases in size (b), becoming zero 

when the mass reaches the equilibrium position (c). Because the mass has 

inertia, it overshoots the equilibrium position. The net force now acts down-

ward (d) and slows the mass to zero speed (e). Then the mass gains speed in 

the downward direction (f). Again, the mass passes the equilibrium position 

(g). Now the net force is once again upward (h) and slows the mass until it 

reaches its lowest point (a). This sequence [Figure 15-2(a through a)] com-

pletes one cycle.
 Actually, a cycle can begin at any position. It lasts until the mass returns to 

the original position and is moving in the same direction. For example, a cycle 

may begin when the mass passes through the equilibrium point on its way up 

(c) and end when it next passes through this point on the way up. Note that 

the cycle does not end when the mass passes through the equilibrium point on 

the way down (g). This motion is known as periodic motion, and the amount 

of time required for one cycle is known as the period T.
 If we ignore frictional effects, energy conservation (Chapter 7) tells us that 

the mass travels the same distance above and below the equilibrium position. 

u Extended presentation available in 
the Problem Solving supplement
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Figure 15-1 At the equilibrium posi-
tion, the upward force due to the spring is 
equal to the weight of the mass.



This distance is marked in Figure 15-2 and is known as the amplitude of the 

vibration. In real situations the amplitude decreases and eventually the motion 

dies out because of the frictional effects that convert mechanical energy into 

thermal energy.

 We can describe the time dependence of the vibration equally well by giv-

ing its frequency f, the number of cycles that occur during a unit of time. 

Frequency is often measured in cycles per second, or hertz (Hz). For example, 

concert A (the note that orchestras use for tuning) has a frequency of about 

440 hertz, household electricity oscillates at 60 hertz, and your favorite FM sta-

tion broadcasts radio waves near 100 million hertz.

 There is a simple relationship between the frequency f and the period T—

one is the reciprocal of the other:

f 5
1

T

T 5
1

f

 To illustrate this relationship, let’s calculate the period of a spring vibrating 

at a frequency of 4 hertz:

T 5
1

f
5

1

4 Hz
5

1

4 cycles/s
5

1

4
 s

 This calculation shows that a frequency of 4 cycles per second corresponds 

to a period of 14 second. This makes sense because a spring vibrating four times 

per second should take 14 of a second for each cycle. (When we state the period, 

we know it refers to one cycle and don’t write “second per cycle.”)

Equilibrium
position
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a b c d e f g h a Figure 15-2 A time sequence showing 
one complete cycle for the vibration of a 
mass on a spring. The clocks show that equal 
time intervals separate the images.

t frequency 5
1
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t period 5  
1
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306 Chapter 15 Vibrations and Waves

 We may guess that the time it takes to complete one cycle would change as 

the amplitude changes, but experiments show that the period remains essen-

tially constant. It is fascinating that the amplitude of the motion does not affect 

the period and frequency. (Again, we have to be careful not to stretch the 

system “too much.”) This means that a vibrating guitar string always plays the 

same frequency regardless of how hard the string is plucked.

 Although the period for a mass vibrating on the end of a spring does not 

depend on the amplitude of the vibration, we may expect the period to change 

if we switch springs or masses. The stiffness of the spring and the size of the 

mass do change the rate of vibration.

 The stiffness of a spring is characterized by how much force is needed to 

stretch it by a unit length. For moderate amounts of stretch or compression, 

this value is a constant known as the spring constant k. In SI units this con-

stant is measured in newtons per meter. Larger values correspond to stiffer 

springs.

 In trying to guess the relationship between the spring constant, mass, 

and period, we would expect the period to decrease as the spring constant 

increases because a stiffer spring means more force and therefore a quicker 

return to the equilibrium position. Furthermore, we would expect the period 

to increase as the mass increases because the inertia of a larger mass will slow 

the motion.

Q:  What is the period of a mass that vibrates with a frequency of 10 times per second?

A:  Because the period is the reciprocal of the frequency, we have

T 5
1

f
5

1

10 Hz
5 0.1 s

The mathematical relationship for the period of a mass on a spring can be obtained 
theoretically and is verified by experiment:

T 5 2p
Å

m
k

where p is approximately 3.14.
 As an example, consider a 0.2-kg mass hanging from a spring with a spring constant 
of 5 N/m:

T 5 2p
Å

m
k

5 2p
Å

0.2 kg

5 N/m
5 6.28

Å

1

25
 s2 5 1.26 s

Therefore, this mass–spring combination vibrates with a period of 1.26 s, or a frequency 
of 0.793 Hz.

WORKING IT OUT Period of a Mass on a Spring

period of a mass on a spring u

Q:  What is the period of a 0.1-kg mass hanging from a 
spring with a spring constant of 0.9 N/m?

A:  2.09 s.



The Pendulum

The pendulum is another simple system that oscillates. Students are often sur-

prised to learn (or to discover by experimenting) that the period of oscillation 

does not depend on the amplitude of the swing. To a very good approxima-

tion, large- and small-amplitude oscillations have the same period if we keep 

their amplitudes less than 30 degrees. This amazing property of pendula was 

first discovered by Galileo when he was a teenager sitting in church watching 

a swinging chandelier. (Clearly, he was not paying attention to the service.) 

Galileo tested his hypothesis by constructing two pendula of the same length 

and swinging them with different amplitudes. They swung together, verifying 

his hypothesis.

 Let’s consider the forces on a pendulum when it has been pulled to the 

right, as shown in Figure 15-3. The component of gravity acting along the 

string is balanced by the tension in the string. Therefore, the net force is 

the component of gravity at right angles to the string and directed toward 

the lower left. This restoring force causes the pendulum bob to accelerate 

toward the left. Although the restoring force on the bob is zero at the lowest 

point of the swing, the bob passes through this point (the equilibrium posi-

tion) because of its inertia. The restoring force now points toward the right 

and slows the bob.

 We found in free fall that objects with different masses fall with the same 

acceleration because the gravitational force is proportional to the mass. There-

fore, we may expect that the motion of a pendulum would not depend on the 

mass of the bob. This prediction is true and can be verified easily by making 

two pendula of the same length with bobs of the same size made out of differ-

ent materials so that they have different masses. The two pendula will swing 

side by side.

T 

Fg

Fnet

Equilibrium
position

Q:  Why do we suggest using different materials?

A:  If we use the same type of material, the size has to be different to get different 
masses. Different sizes may also affect the period. When doing an experiment, it is 
important to keep all but one factor constant.

Figure 15-3 The net force on the 
pendulum bob accelerates it toward the 
equilibrium position.

A strobe photograph of a pendulum taken 
at 20 flashes per second. Note that the pen-
dulum bob moves the fastest at the bottom 
of the swing.

Clocks 307

 We also know from our experiences with pendula that the period depends 

on the length of the pendulum; longer pendula have longer periods. There-

fore, the length of the pendulum can be changed to adjust the period.

 Because the restoring force for a pendulum is a component of the gravi-

tational force, you may expect that the period depends on the strength of 

gravity, much as the period of the mass on the spring depends on the spring 

constant. This hunch is correct and can be verified by taking a pendulum to 

the Moon, where the acceleration due to gravity is only one-sixth as large as 

that on Earth.

Clocks

Keeping time is a process of counting the number of repetitions of a regular, 

recurring process, so it is reasonable that periodic motions have been impor-

tant to timekeepers. Devising accurate methods for keeping time has kept 

many scientists, engineers, and inventors busy throughout history. The earliest 

methods for keeping time depended on the motions in the heavens. The day 

was determined by the length of time it took the Sun to make successive cross-

ings of a north–south line and was monitored with a sundial. The month was 
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308 Chapter 15 Vibrations and Waves

determined by the length of time it took the Moon to go through its phases. 

The year was the length of time it took to cycle through the seasons and was 

monitored with a calendar, a method of counting days.

 As science and commerce advanced, the need grew for increasingly accu-

rate methods of determining time. An early method for determining medium 

intervals of time was to monitor the flow of a substance such as sand in an 

hourglass or water in a water clock. Neither of these, however, was very accu-

rate, and because they were not periodic, they had to be restarted for each 

time interval. It is interesting to note that Galileo kept time with a homemade 

water clock in many of his early studies of falling objects.

 The next generation of clocks took on a different character, employing oscil-

lations as their basic timekeeping mechanism. Galileo’s determination that the 

period of a pendulum does not depend on the amplitude of its swing led to 

Christiaan Huygens’s development of the pendulum clock in 1656, 14 years after 

Galileo’s death. One of the difficulties Huygens encountered was to develop a 

mechanism for supplying energy to the pendulum to maintain its swing.

 Seafarers spurred the development of clocks that would keep accurate time 

over long periods. To determine longitude requires measuring the positions 

of prominent stars and comparing these positions with their positions as seen 

from Greenwich, England, at the same time. Because pendulum clocks did not 

work on swaying ships, several cash prizes were offered for the design and 

construction of suitable clocks. Beginning in 1728, John Harrison, an English 

instrument maker, developed a series of clocks that met the criteria, but he was 

not able to collect his money until 1765. One of Harrison’s clocks was accurate 

to a few seconds after 5 months at sea.

 Any periodic vibration can be used to run clocks. Grandfather clocks 

use pendulums to regulate the hands and are powered by hanging weights. 

Mechanical watches have a balance wheel fastened to a spring. Electric clocks 

use 60-hertz alternating electric current. Digital clocks use the vibrations of 

quartz crystals or resonating electric circuits.

 Modern time is kept with atomic clocks, which use the frequencies of atomic 

transitions (see Chapter 23) and are extremely insensitive to such changes in 

the clocks’ environment as pressure and temperature. Atomic clocks are accu-

rate to better than a second in 60 million years.

The period of a pendulum is given by

T 5 2p
Å

L
g

As an example, consider a pendulum with a length of 10 m:

T 5 2p
Å

L
g

5 2p
Å

10 m

10 m/s2
5 6.28"1 s2 5 6.28 s

Therefore, this pendulum would oscillate with a period of 6.28 s.

WORKING IT OUT Period of a Pendulum

Q:  What would you expect for the period of a 1.7-m pendu-
lum on the Moon?

A:  6.28 s.

period of a pendulum u

A replica of an early mechanical clock.
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Resonance

We discovered with the mass on a spring and the pendulum that each system 

had a distinctive, natural frequency. The natural frequency of the pendulum 

is determined by its length and the acceleration due to gravity. Pulling the bob 

back and releasing it produces an oscillation at this particular frequency.

 A child on a swing is an example of a life-size pendulum. If the child does 

not “pump” her legs and if no one pushes her, the amplitude of the swing con-

tinually decreases, and the child comes to rest. As every child knows, however, 

pumping or pushing greatly increases the amplitude. A less obvious fact is that 

the size of the effort—be it from pumping or pushing—is not important, but 

its timing is crucial. The inputs must be given at the natural frequency of the 

swing. If the child pumps at random times, the swinging dies out. This phe-

nomenon of a large increase in the amplitude when a periodic force is applied 

to a system at its natural frequency is called resonance.
 Resonance can also be achieved by using impulses at other special frequen-

cies, but each of these has a definite relationship to the natural frequency. For 

example, if you push the child on the swing every other time, you are provid-

ing inputs at one-half of the natural frequency; every third time gives inputs 

at one-third of the natural frequency; and so on. Each of these frequencies 

causes resonance.

Q:  What happens to the amplitude of the swing if you push at twice the natural 
frequency?

A:  In this case you would be pushing twice for each cycle. One of the pushes would 
negate the other, and the swing would stop.

Modern time is kept by extremely accurate 
atomic clocks such as this F1 operated by 
the National Institute of Standards and 
Technology. It is accurate to 1 second in 80 
million years.

If children pump at the right frequencies, 
they can increase the amplitudes of their 
motions.

 More complex systems also have natural frequencies. If someone strikes a 

spoon on a table, you are not likely to mistake its sound for that of a tuning 

fork. The vibrations of the spoon produce sounds that are characteristic of 

the spoon. All objects have natural frequencies. The factors that determine 

these frequencies are rather complex. In general, the dominant factors are 

the stiffness of the material, the mass of the material, and the size of the 

object.

 Resonance can have either good or bad effects. Although your radio 

receives signals from many stations simultaneously, it plays only one station 

at a time. The radio can be tuned so that its resonant frequency matches the 

broadcast frequency of your favorite station. Tuning puts the radio in reso-

nance with one particular broadcast frequency and out of resonance with 

the frequencies of the competing stations. On the other hand, if the radio 

has an inferior speaker with one or two strong resonant frequencies, it will 

distort the sounds from the radio station by not giving all frequencies equal 

amplification.

 Suppose you have a collection of pendula of different lengths, as shown in 

Figure 15-4. Notice that two of these pendula have the same length and thus 

the same natural frequency. The pendula are not independent because they 

are all tied to a common string. The motion of one of them is felt by all the 

others through pulls by the string. If you start the left-hand pendulum swing-

ing, its back-and-forth motion creates a tug on the common string with a 

frequency equal to its natural, or resonant, frequency. Pendula with different 

frequencies jiggle a little bit but are not affected much. However, the pendu-

lum with the same frequency resonates with the input frequency, drastically 

increasing its amplitude. In exactly the same way, objects resonate when input 

frequencies are the same as any of their natural frequencies.
Figure 15-4 Pendula with the same 
natural frequency resonate with each other.

Resonance 309
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310 Chapter 15 Vibrations and Waves

Everyday Physics Tacoma Narrows Bridge

Resonant effects can sometimes have disastrous consequences. 
In 1940 a new bridge across one of the arms of Puget Sound 

in the state of Washington was opened to traffic. It was a suspension 
bridge with a central span of 850 meters (2800 feet). Because the 
bridge was designed for two lanes, it had a width of only 12 meters 
(40 feet). Within a few months after it opened, early-morning winds 
in the Sound caused the bridge to oscillate in standing-wave patterns 
that were so large in amplitude that the bridge failed structurally and 
fell into the water below, as shown in the figure.
 But why did this bridge fail when other suspension bridges are 
still standing (including the bridge that now spans the Sound at the 
location of the original)? The bridge was long, narrow, and particu-
larly flexible. Motorists often complained about the vertical oscilla-
tions and nicknamed the bridge “Galloping Gertie.” However, the 
amplitudes of the vertical oscillations were relatively small until that 
fateful morning. The wind was blowing along the arm of the Sound 
(perpendicular to the length of the bridge) at moderate to high veloc-
ities but was not near gale force. One may speculate that fluctua-
tions in the wind speed matched the natural frequency of the bridge, 
causing it to resonate. However, the wind was reasonably steady, 
and wind fluctuations are normally quite random. Furthermore, the 
forces would be horizontal, and the oscillations were vertical.
 The best explanation involves the formation and shedding of 
vortices in the wind blowing past the bridge. Vortices are the eddies 

that you get near the ends of the oars when you row a boat. Vor-
tices rotate in opposite directions in the wind blowing over and 
under the bridge. As each vortex is shed, it exerts a vertical impulse 
on the bridge. Therefore, if the frequency of vortex formation and 
shedding is near the natural frequency of the bridge for vertical 
oscillations, a standing wave will form just like those on a guitar 
string. (The frequency does not have to match exactly; it only 
needs to be close. How close depends on the details of the bridge 
construction.)
 The bridge would have been fine except for another unfortunate 
circumstance. Besides the vertical standing wave, there were also 
torsional, or twisting, standing waves on the bridge. Normally, the 
frequencies of the two standing waves are quite different. But for 
the Tacoma Narrows Bridge, the two frequencies were fairly close 
(eight per minute for the vertical motion compared with ten per 
minute for the twisting motion). This allowed some of the energy 
from the vertical motion to be transferred to the twisting motion 
that eventually led to the mechanical failure of the bridge.

1. What was the periodic driving force that caused the standing 
wave to be formed on the bridge?

2. What uncommon characteristic of the Tacoma Narrows Bridge 
ultimately led to its mechanical failure?

The Tacoma Narrows Bridge collapsed when winds set up resonant vibrations.

Waves: Vibrations That Move

Most waves begin with a disturbance of some material. Some disturbances, 

such as the clapping of hands, are onetime, abrupt events, whereas others, 
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such as the back-and-forth vibration of a guitar string, are periodic events. 

The simplest wave is a single pulse that moves outward as a result of a single 

disturbance.

 Imagine a long row of dominoes lined up as shown in Figure 15-5. Once a 

domino is pushed over, it hits its neighbor, and its neighbor hits its neighbor, 

and so on, sending the disturbance along the line of dominoes. The key point 

is that “something” moves along the line of dominoes—from the beginning to 

the end—but it is not any individual domino.

 Actually, the domino example is not completely analogous to what hap-

pens in most situations involving waves because there is no mechanism for 

restoring the dominoes in preparation for the next pulse. We can correct this 

omission by imagining a long chain of balls connected by identical springs, as 

shown in Figure 15-6. As the disturbance moves from left to right, individual 

balls are lifted up from their equilibrium positions and then returned to these 

equilibrium positions. The springs allow each ball to pull its neighbor away 

from equilibrium, just as the dominoes passed the disturbance from neighbor 

to neighbor by striking each other. After the pulse passes, the springs provide 

the restoring force that returns each ball to equilibrium. Notice that the pulse 

travels along the chain of balls without any of the balls moving in the direction 

of the pulse. Figure 15-6 shows the shape of the chain of balls and springs at 

the time the center ball reaches its maximum displacement.

 In a similar manner, a pebble dropped into a pond depresses a small por-

tion of the surface. Each vibrating portion of the surface generates distur-

bances in the surrounding water. As the process continues, the disturbance 

moves outward in circular patterns, such as those shown in Figure 15-7.

 This type of disturbance, or pulse, occurs in a number of common, every-

day events. A crowd transmits single pulses when a small group begins push-

ing. This push spreads outward through the crowd much as a ripple moves 

over a pond’s surface. Similarly, the disturbance produced by a clap sends a 

single sound pulse through the air. Other examples of nonrecurrent waves 

include tidal bores, tidal waves, explosions, and light pulses emitted by super-

novas (exploding stars).

Figure 15-5 A wave pulse travels along 
a line of dominoes.

Figure 15-7 Water drops produce 
disturbances that move outward in circular 
patterns.

Figure 15-6 A wave disturbance can 
move along a chain of balls and springs.

Waves: Vibrations That Move 311

Ia
n 

O
’L

ea
ry

/S
to

ne
/G

et
ty



312 Chapter 15 Vibrations and Waves

 Although a wave moves outward from the original disturbance, there is no 

overall motion of the material. As the wave travels through the medium, the 

particles of the material vibrate about their equilibrium positions. Although 

the wave travels down the chain, the individual balls of the chain return to 

their original positions. The wave transports energy rather than matter from 

one place to another. The energy of an undisturbed particle in front of the 

wave is increased as the wave passes by and then returns to its original value. 

In a real medium, however, some of the energy of the wave is left behind as 

thermal energy in the medium.

 There are two basic wave types. A wave in which the vibration of the medium 

is perpendicular to the motion of the wave is called a transverse wave. Waves 

on a rope are transverse waves. A wave in which the vibration of the medium 

is along the same direction as the motion of the wave is called a longitudinal 
wave. Both types can exist in the chain of balls. If a ball is moved vertically, a 

transverse wave is generated [Figure 15-8(a)]. If the ball is moved horizontally, 

the wave is longitudinal [Figure 15-8(b)].

 Transverse waves can move only through a material that has some rigidity; 

transverse waves cannot exist within a fluid because the molecules simply slip 

by each other. Longitudinal waves, on the other hand, can move through most 

materials because the materials can be compressed and have restoring forces.

(a)

(b)

Q:  Is it possible to have transverse waves on the surface of water?

A:  Transverse surface waves are possible because the force of gravity tends to restore 
the surface to its flat equilibrium shape. Actually, the motion of the individual water 
molecules is a combination of transverse motion and longitudinal motion; the water 
molecules follow elliptical paths.

One-Dimensional Waves

Because all waves have similar properties, we can look at waves that are easy to 

study and then make generalizations about other waves. Imagine a clothesline 

tied to a post, as in Figure 15-9. A flick of the wrist generates a single wave 

pulse that travels away from you. On an idealized rope, the wave pulse would 

maintain its shape and size. On a real rope, the wave pulse slowly spreads out. 

We will ignore this spreading in our discussion. The wave’s speed can be calcu-

lated by dividing the distance the pulse travels by the time it takes.

 The speed of the wave can be changed. If you pull harder on the rope, the 

pulse moves faster; the speed increases as the tension in the rope increases. 

The speed also depends on the mass of the rope; a rope with more mass per 

Figure 15-8 In a transverse wave 
(a), the medium moves perpendicular to 
the direction of propagation of the wave, 
whereas in a longitudinal wave (b), the 
medium’s motion is parallel to the direction 
of propagation.



unit length has a slower wave speed. Surprisingly, the amplitude of the pulse 

does not have much effect on the speed.

 These observations make sense if we consider the vibrations of a small por-

tion of the rope. The piece of rope is initially at rest and moves as the leading 

edge of the pulse arrives. How fast the rope returns to its equilibrium position 

determines how the pulse passes through the region (and hence, the speed 

of the pulse). The more massive the rope, the more sluggishly it moves. Also, 

if the rope is under a larger tension, the restoring forces on the piece of rope 

are larger and cause it to return to its equilibrium position more quickly.

FLAWED REASONING

A physics teacher has offered his class a prize if they can send a trans-
verse pulse down a long spring and then send a second pulse down 
the same spring in such a manner as to catch up with the first pulse. Three students 
have taken up the challenge.
 Trever: “I will make the first pulse with a slow movement of my hand and then make 
a second pulse with a very quick jerk on the spring. That should send the second pulse 
down the spring at a quicker speed.”
 Lindzee: “I think the amplitude of the pulse is what matters, not how fast you move 
your hand. Send the first pulse down with a big amplitude and then send the second 
pulse down with a small amplitude.”
 Courtnee: “The textbook claims that pulse speeds don’t depend on how the pulse 
was created but only on the tension and the mass density of the spring. We can’t 
change the mass density after we send the first pulse, but we could tighten the spring. 
Send the first pulse and then pull the spring tighter before we send the second pulse.”
 All three students are wrong. Find the flaws in their claims.

ANSWER Courtnee correctly points out the flaws in her classmates’ reasoning. The 
speed of a pulse down a stretched spring does not depend on the size or shape of the 
pulse or the manner in which it was created. Courtnee’s suggestion of stretching the 
spring will indeed increase the speed of transverse pulses on the spring, but this will 
speed up both pulses. The physics teacher tricked them with an impossible challenge.

 When a pulse hits the end that is attached to the post, it “bounces” off and 

heads back. This reflected pulse has the same shape as the incident pulse but 

is inverted, as shown in Figure 15-10. If the incident pulse is an “up” pulse (a 

crest), the reflected pulse is a “down” pulse (a trough). If the end of the rope 

is free to move up and down, the pulse still reflects, but no inversion takes 

place.

Figure 15-9 While pieces of the rope 
vibrate up and down, the wave moves along 
the rope.

Before

After

Figure 15-10 A wave pulse is inverted 
when it reflects from a fixed end. Note that 
the steep edge leads on the way in and on 
the way out.

One-Dimensional Waves 313



314 Chapter 15 Vibrations and Waves

 What about the front and back of the wave pulse? To observe this you would 

generate a pulse that is not symmetric. The pulses shown in Figure 15-10 are 

steeper in front than in back. The steeper edge is away from you when the 

pulse moves down the rope and toward you when the reflected pulse returns. 

The leading edge continues to lead.

 These inversions contrast with the behavior of a ball when it “reflects” from 

a wall. If the ball is not spinning, the top of the ball remains on top, but the 

leading edge is interchanged. Figure 15-11 shows that the blue half leads 

before the collision, whereas the green half leads afterward.

Superposition

Suppose you send a crest down the rope and, when it reflects as a trough, you 

send a second crest to meet it. An amazing thing happens when they meet. The 

waves pass through each other as if the other were not there. This is shown in 

Figure 15-12. Each pulse retains its own shape, clearly demonstrating that the 

pulses are not affected by the “collision.” A similar thing happens when you 

throw two pebbles into a pond. Even though the wave patterns overlap, you 

can still see a set of circular patterns move outward from each splash.

 In contrast, imagine what would happen if two particles—say, two Volkswa-

gens—were to meet. Particles don’t exhibit this special property of waves. It 

would certainly be a strange world if waves did not pass through each other. 

Two singers singing at the same time would garble each other’s music, or the 

sounds from one might bounce off those from the other.

 During the time the wave pulses pass through each other, the resulting 

disturbance is a combination of the individual ones; it is a superposition of 

the pulses. As shown in Figure 15-13, the distance of the medium from the 

equilibrium position, the displacement, is the algebraic sum of the displace-

ments of the individual wave pulses. If we consider displacements above the 

equilibrium position as positive and those below as negative, we can obtain the 

shape of the resultant disturbance by adding these numbers at each location 

along the rope.

Before

After

(a)

(b)

(c)

(d)

(e)

( f )

Figure 15-11 In contrast to a wave, the 
blue half of the ball leads on the way in and 
trails after reflection from the wall.

Figure 15-13 This time sequence 
shows that the superposition of two wave 
pulses yields shapes that are the sum of the 
individual shapes.

Figure 15-12 The two wave pulses on 
the rope pass through each other as if the 
other were not present.



Everyday Physics Probing Earth

Imagine drawing a circle to represent Earth. Further, 
imagine drawing a dot to show how far Earth’s interior 
has been explored by direct drilling and sampling tech-
niques. Where would you place the dot? The dot should 
be placed on the original circle. Earth is about 6400 kilo-
meters (4000 miles) in radius, and we have drilled into 
its interior only about 12.2 kilometers, less than 0.2% of 
the distance to the center. Therefore, we must learn about 
Earth’s interior using indirect means such as looking at 
signals from explosions and earthquakes.
 Three kinds of wave are produced in an earthquake. 
One type travels along the surface, and the other two 
travel through Earth’s interior; one of the interior waves 
is a longitudinal wave, and the other is a transverse wave. 
These waves move outward in all directions from the 
earthquake site and are received at numerous earthquake-
monitoring sites around the world. The detection of these 
waves and their arrival times provides clues about Earth’s 
interior.
 Two major things happen to the waves: First, partial 
reflections occur at boundaries between distinctly dif-
ferent regions. Second, the waves change speed as the 
physical conditions—such as the elasticity and density—
change. Changing a wave’s speed usually results in the 
wave changing direction, a phenomenon known as refrac-
tion, which we will discuss in Chapter 18. As the waves go 
deeper into the interior, they speed up, causing them to 
change direction.
 The longitudinal waves are called the primary waves, or P waves, 
and are created by the alternating expansion and compression of 
the rocks near the source of the shock. This push–pull vibration can 
be transmitted through solids, liquids, and gases. P waves move with 
the highest speeds and therefore are the first to arrive at a seis-
mograph station. P waves move at about 5 kilometers per second 
(11,000 miles per hour!) near the surface and speed up to about 7 
kilometers per second toward the base of the upper crust.
 The secondary waves, or S waves, are transverse waves. In this 
case the rock movement is perpendicular to the direction the wave 
is traveling. S waves travel through solids but cannot propagate 
through liquids and gases because fluids lack rigidity.
 We wouldn’t be able to infer much about Earth’s interior if only 
one signal arrived at each site. There would be a number of paths 

that could account for the characteristics and timing of the signal. 
Fortunately, many sites receive multiple signals that allow large 
computers to piece the information together to form a model of 
Earth’s interior. Information that is not received is also important. 
After an earthquake, many sites do not receive any transverse sig-
nals. This tells us that they are located in a shadow region behind 
a liquid core, as shown in the figure.

1. Would transverse or longitudinal waves be used to commu-
nicate with a submarine that was submerged in the ocean? 
Explain your choice.

2. What characteristic of all waves, transverse or longitudinal, 
explains the P wave shadow zone that is observed?

Source: H. Levin, The Earth through Time (Philadelphia: Saunders, 1992).
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Cross section of Earth showing the paths of some waves produced by an earthquake.

 If two crests overlap, the disturbance is bigger than either one alone. A crest 

and a trough produce a smaller disturbance. If the crest and the trough are 

the same size and have symmetric shapes, they completely cancel at the instant 

of total overlap. A high-speed photograph taken at this instant yields a picture 
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of a straight rope. This phenomenon is illustrated in Figure 15-12(d). This is 

not as strange as it may seem. If we take a high-speed photograph of a pendu-

lum just as it swings through the equilibrium position, it would appear that the 

pendulum was not moving but simply hanging straight down. In either case, 

longer exposures would blur, showing the motion.

Periodic Waves

A rope moved up and down with a steady frequency and amplitude generates 

a train of wave pulses. All the pulses have the same size and shape as they travel 

down the rope. The drawing in Figure 15-14 shows a periodic wave moving to 

the right. New effects emerge when we examine periodic waves. For one thing, 

unlike the single pulse, periodic waves have a frequency. The frequency of the 

wave is the oscillation frequency of any piece of the medium.

 An important property of a periodic wave is the distance between identi-

cal positions on adjacent wave pulses, called the wavelength of the periodic 

wave. This is the smallest distance for which the wave pattern repeats. It may 

be measured between two adjacent crests, or two adjacent troughs, or any two 

identical spots on adjacent pulses, as shown in Figure 15-15. The symbol used 

for wavelength is the Greek letter lambda l. 

 The speed of the wave can be determined by measuring how far a particular 

crest travels in a certain time. In many situations, however, the speed is too 

fast, the wavelength too short, or the amplitude too small to allow us to follow 

the motion of a single crest. We then use an alternative procedure.

 Suppose you take a number of photographs at the same frequency as the 

vertical vibration of any portion of the rope. You would find that all the pic-

tures look the same. During the time the shutter of the camera was closed, 

each portion of the rope went through a complete cycle, ending in the posi-

tion it had during the previous photograph. But this means that each crest 

moved from its original position to the position of the crest in front of it. That 

λ

λ

λ

Figure 15-14 A periodic wave on a 
rope can be generated by moving the end 
up and down with a constant frequency.

Figure 15-15 The wavelength of a peri-
odic wave is the distance between any two 
identical spots on the wave.



is, the crest moved a distance equal to the wavelength l. Because the time 

between exposures is equal to the period T, the wave’s speed v is

v 5
l

T

 Because the frequency is just the reciprocal of the period, we can change 

the equation to read

v � lf

 Although we developed this relationship for waves on a rope, there is noth-

ing special about these waves. This relationship holds for all periodic waves, 

such as radio waves, sound waves, and water waves.

t speed � wavelength � frequency 

If you know any two of the three quantities in the wave equation, you can use this rela-
tionship to calculate the third. As an example, let’s calculate the speed of a wave that 
has a frequency of 40 Hz and a wavelength of 3

4
 m. Multiplying the wavelength and the 

frequency gives us the speed:

v � lf � (3
4 m)(40 Hz) � 30 m/s

WORKING IT OUT Speed of a Wave

Q:  If water waves have a frequency of 5 Hz and a wave-
length of 8 cm, what is the wave speed?

A:  v � lf � (8 cm)(5 Hz) � 40 cm/s.

Standing Waves

When a periodic wave is confined, new effects emerge because of the superpo-

sition of the reflected waves with the original ones. Let’s return to the example 

of a periodic wave moving down a rope toward a rigid post. When the periodic 

wave reflects from the post, it superimposes with the wave heading toward 

the post. The complete pattern results from the superposition of the original 

wave and reflections from both ends. In general, we get a complicated pattern 

with a small amplitude, but certain frequencies cause the rope to vibrate with 

a large amplitude. Figure 15-16 shows multiple images of a resonating rope. 

Although the superimposing waves move along the rope, they produce a reso-

nant pattern that does not move along the rope. Because the pattern appears 

to stand still (in the horizontal direction), it is known as a standing wave.
 It may seem strange that two identical waves traveling in opposite directions 

combine to produce a vibrational pattern that doesn’t travel along the rope. 

We can see how this happens by using the superposition principle to find the 

results of combining the two traveling waves. Let’s start at a time when the 

crests of the traveling wave moving to the right (the blue line in Figure 15-17) 

line up with the crests of the wave moving to the left (yellow line). (The blue 

and yellow lines lie on top of each other and are shown as a single green line.) 

Adding the displacements of the two traveling waves yields a wave that has the 

same basic shape, but twice the amplitude. This is shown by the black line in 

Figure 15-17(a).

Standing Waves 317



318 Chapter 15 Vibrations and Waves

 Figure 15-17(b) shows the situation a short time later. The blue wave has 

moved to the right, and the yellow wave has moved the same distance to the 

left. The superposition at this time produces a shape that still looks like one of 

the traveling waves but does not have as large an amplitude as before. A short 

time later, the crests of one wave line up with the troughs of the other. At this 

time the two waves cancel each other, and the rope is straight. Although the 

rope is straight at this instant, some parts of the rope are moving up while oth-

ers are moving down. The remaining drawings in Figure 15-17 show how this 

pattern changes through the rest of the cycle as time progresses.

 Notice that some portions of the rope do not move. Even though each 

traveling wave by itself would cause all pieces of the rope to move, the waves 

interfere to produce no motion at these points. Such locations are known as 

nodes and are located on the vertical lines indicated by N in Figure 15-17. The 

positions on the rope that have the largest amplitude are known as antinodes 

and are on the lines marked by A. Notice that the nodes and antinodes alter-

nate and are equally spaced.

 There is a relationship between the shape of the resonant pattern, or stand-

ing wave, and the moving periodic waves that superimpose to create it. The 

FLAWED REASONING

The following question appears on the midterm exam: “A periodic 
wave is traveling to the right on a long, stretched rope. Two small 
pieces of yarn are tied to the rope, one at point A and the other at point B, as shown in 
the figure:

Draw an arrow for each piece of yarn, indicating the direction of its velocity when the 
picture was taken.”
 Brielle gives the following answer to this question: “Because the wave is moving to 
the right, the pieces of yarn must also be moving to the right. The wave is carried by the 
rope.”
What is wrong with Brielle’s reasoning, and what is the correct answer to the exam 
question?

ANSWER The wave is a transverse wave, meaning that the medium moves perpen-
dicular to the direction of the wave. Therefore, the pieces of yarn can only move up or 
down. If we look at the wave at a slightly later time (when it has moved a little to the 
right), we see that the yarn at point A has moved upward and the yarn at point B has 
moved downward:

A B

A
B



“wavelength” of the standing wave is equal to the wavelength of the underlying 

periodic wave. This can be seen in Figure 15-17.

 Unlike the pendulum or the mass on a spring where there was only one 

resonant frequency, periodic waves that are confined have many different res-

onant frequencies. Strobe photographs of the standing wave with the lowest 

frequency, or fundamental frequency, show that the rope has shapes like those 

drawn in Figure 15-18. The images show how the shape of the rope changes 

during one-half cycle. At position 1 the rope has the largest possible crest. 

The displacement continually decreases until it becomes zero and the rope is 

straight (between positions 3 and 4). The rope’s inertia causes it to overshoot 

and form a trough that grows in size. At the end of the half cycle, the rope is 

in position 6 and beginning its upward journey. The process then repeats.

 This pattern has the lowest frequency and thus the longest wavelength of 

the resonant modes. Notice that one-half wavelength is equal to the length of 

the rope, or the wavelength is twice the length of the rope. Because this is also 

the wavelength of the traveling waves, the longest resonant wavelength on a 

rope with nodes at each end is twice the length of the rope.

 If we slowly increase the frequency of the traveling wave, the amplitude 

quickly decreases. The vibrational patterns are rather indistinct until the next 

resonant frequency is reached. This new resonant frequency has twice the fre-

quency of the fundamental and is known as the second harmonic. Six shapes 

of the rope for this standing-wave pattern are shown in Figure 15-19. When the 

rope is low on the left side, it is high on the right, and vice versa. Because the 

rope has the shape of a full wavelength, the wavelength of the traveling waves 

is equal to the length of the rope. Note that this pattern has one more node 

and one more antinode than the fundamental standing wave.

 We can continue this line of reasoning. A third resonant frequency can 

be reached by again raising the frequency of the traveling wave. This third 

harmonic frequency is equal to three times the fundamental frequency. This 

standing wave has three antinodes and four nodes, including the two at the 

ends of the rope. Other resonant frequencies occur at whole-number mul-

tiples of the fundamental frequency.

 Remember that the product of the frequency and the wavelength is a con-

stant. This is a consequence of the fact that the speeds of all waves on this rope 

are the same. Therefore, if we increase the frequency by some multiple while 

keeping the speed the same, the wavelength must decrease by the same mul-

tiple. The fundamental wavelength is the largest, and its associated frequency 

is the smallest. As we march through higher and higher frequencies, we get 

shorter and shorter wavelengths. The wavelengths of the higher harmonics 

are obtained by dividing the fundamental wavelength by successive whole 

Q:  How does the distance between adjacent nodes or antinodes compare with the 
wavelength?

A:  Because one antinode is up when the adjacent ones are down, each antinodal 
region corresponds to a crest or a trough. Therefore, the distance between adjacent 
antinodes or adjacent nodes is one-half wavelength. The distance between adjacent 
nodes and antinodes is one-quarter wavelength.

Figure 15-16 A strobe drawing of a 
standing wave on a rope shows how the 
shape of the rope changes with time. The 
shape does not move to the left or right.

(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

i

A N A N A N A

A N A N A N A

)(

Figure 15-17 This set of strobe draw-
ings shows how two traveling waves (the 
blue and yellow lines) combine to form a 
standing wave (the black line). Only the 
black line would be visible in a photograph.
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Q:  How does the wavelength of the third harmonic compare with the length of the 
rope?

A:  The wavelength of the third harmonic is one-third the length of the fundamental 
wavelength. Because the fundamental wavelength is twice the length of the rope, the 
wavelength of the third harmonic would be two-thirds the length of the rope.

numbers; the wavelength of the second harmonic is one-half the wavelength 

of the fundamental wavelength.

1
2
3
4
5
6

1
2
3
4
5
6

6
5
4
3
2
1

Figure 15-18 The shapes of a rope 
oscillating as a standing wave of the lowest 
frequency.

Figure 15-19 The shapes of a rope for 
a standing wave with the second resonant 
frequency.

Interference

Standing waves on a rope are an example of the superposition, or interfer-
ence, of waves in one dimension. If we use a two-dimensional medium—say, 

the surface of water—we can generate some new effects.

 Suppose we use two wave generators to create periodic waves on the sur-

face of water in a ripple tank like the one in Figure 15-20(a). Because the two 

waves travel in the same medium, they have the same speed. We also assume 

that the two sources have the same frequency and that they are in phase; that 

is, both sources produce crests at the same time, troughs at the same time, 

and so on. The superposition of these waves creates the interference pattern 

shown in the photograph and drawing of Figure 15-20. The bright regions 

are produced by the crests, whereas the dark regions are produced by the 

troughs.

 In some places, crest meets crest to form a supercrest, and one-half period 

later, trough meets trough to form a supertrough. This meeting point is a 

region of large amplitude; the two waves form antinodal regions. In other 

places, crest and trough meet. Here, if the two waves have about the same 

amplitude, they cancel each other, resulting in little or no amplitude; the two 

waves form nodal regions.



 Because of the periodic nature of the waves, the nodal and antinodal 

regions have fixed locations. These stationary interference patterns can be 

observed only if the two sources emit waves of the same frequency; otherwise, 

one wave continually falls behind the other, and the relationships between the 

two waves change. The two wave sources do not have to be in phase; there can 

be a time delay between the generation of crests by one source and the other 

as long as the time delay is constant. For simplicity we usually assume that this 

time delay is zero; that is, the two sources are in phase.

 The regions of crests and troughs lie along lines. One such antinodal line 

lies along the perpendicular to the midpoint of the line joining the two sources. 

This is the vertical red line in Figure 15-20(c). This central antinodal line is 

the same distance from the two sources. Therefore, crests generated at the 

same time at the two sources arrive at the same time at this midpoint to form 

supercrests. Similarly, two troughs arrive together, creating a supertrough.

 Consider a point P off to the right side of the central line, as shown in Fig-

ure 15-21. Although nothing changes at the sources, we get a different result. 

Crests from the two sources no longer arrive at the same time. Crests from 

the left-hand source must travel a greater distance and therefore take longer 

to get to P. The amount of delay depends on the difference in the two path 

lengths.

 If the point P is chosen such that the distances to the sources differ by an 

amount equal to one-half wavelength, crests overlap with troughs and troughs 

overlap with crests at point P. The waves cancel. There are many points that 

have this path difference. They form nodal lines that lie along each side of the 

central line, as shown by the black lines in Figure 15-20(c). An antinodal line 

occurs when the path lengths differ by one wavelength; the next nodal line 

when the paths differ by 11
2 wavelengths, and so on.

 The photograph in Figure 15-22 shows the interference pattern for water 

waves with a longer wavelength than those in Figure 15-20. The nodal lines 

are now more widely spaced for the same source separation. Therefore, lon-

ger wavelengths produce wider patterns. Actually, the width of the pattern 

depends on the relative size of the wavelength and the source separation. 

As the ratio of the wavelength to the separation gets bigger, the nodal lines 

spread out. If the wavelength is much larger than the separation, the pattern is 

essentially that of a single source, whereas if it is much smaller, the nodal lines 

are so close together they cannot be seen.

Diffraction

In the photographs in Figure 15-23, periodic water waves move toward a bar-

rier. We see that the waves do not go straight through the opening in the barrier 

but spread out behind the barrier. This bending of a wave is called diffraction 

and is definitely not a property of particles. If a BB gun is fired repeatedly 

through an opening in a barrier, the pattern it produces is a precise “shadow” 

of the opening if we assume that no BBs bounce off the opening’s edges.

Q:  Would the central line still be an antinodal line if the two sources were completely 
out of phase—that is, if one source generates a crest at the same time as the other 
generates a trough?

A:  The central line would now be a nodal line because crests and troughs would arrive 
at the same time.

Figure 15-20 (a) A light bulb above 
a ripple tank produces light and dark lines 
on the floor due to the water waves. (b) 
The interference pattern produced by two 
point sources of the same wavelength and 
phase. (c) The locations of the nodal lines in 
this pattern are shown in black; the central 
antinodal line is shown in red.
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322 Chapter 15 Vibrations and Waves

 The amount of diffraction depends on the relative sizes of the wavelength 

and the opening. If the wavelength is much smaller than the opening, very 

little diffraction is evident. As the wavelength gets closer to the size of the 

opening, the amount of diffraction gets bigger. In Figure 15-23(c) the open-

ing and the wavelength are approximately the same size, and the diffraction is 

evident.

 Notice that diffraction produces nodal and antinodal lines similar to those 

observed in the interference patterns from two point sources. In this case 

there is a broad central antinodal region with nodal lines on each side, and 

the diffraction pattern is created by different portions of the wave interfering 

with themselves. The spacing of these lines is determined by the ratio of the 

wavelength and the width of the opening.

Summary

Vibrations and oscillations are described by the length of time required for 

one cycle, the period T (or its reciprocal, the frequency f ), and the amplitude 

of the vibration, the maximum distance the object travels from the equilib-

rium point. When vibrations are small, the period is independent of the ampli-

tude. The pendulum and a mass hanging on a spring are examples of systems 

that vibrate.

Path
difference

P

Figure 15-21 Whether the region at 
P is a nodal or antinodal region depends on 
the difference in the path lengths from the 
two sources.

Figure 15-23 Ripple tank patterns of water moving upward and passing through a narrow barrier. Note that the amount of diffraction increases 
as the wavelength gets longer.

The waves are diffracted as they pass 
through the openings in the seawall, pro-
ducing an interesting shape at the beach.
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 All systems have a distinctive set of natural frequencies. A simple system 

such as a pendulum has only one natural frequency, whereas more complex 

systems have many natural frequencies. When a system is excited at a natural 

frequency, it resonates with a large amplitude.

 Waves are vibrations moving through a medium; it is the wave (energy) that 

moves through the medium, not the medium itself. Transverse waves vibrate 

perpendicular to the direction of the wave, whereas longitudinal waves vibrate 

parallel to the direction of the wave. The speed of a periodic wave is equal to 

the product of its frequency and its wavelength, v � lf.
 Waves pass through each other as if the other were not there. When they over-

lap, the shape is the algebraic sum of the displacements of the individual waves. 

When a periodic wave is confined, resonant patterns known as standing waves 

can be produced. Portions of the medium that do not move are called nodes, 

whereas portions with the largest amplitudes are known as antinodes. The fun-

damental standing wave has the lowest frequency and the longest wavelength.

 Two identical periodic-wave sources with a constant phase difference pro-

duce an interference pattern consisting of large-amplitude antinodal regions 

and zero-amplitude nodal regions. The spacing of the interference pattern 

depends on the relative size of the wavelength and the source separation.

 Waves do not go straight through openings or around barriers but spread 

out. This diffraction pattern contains nodal and antinodal regions and depends 

on the relative sizes of the wavelength and the opening.

CHAPTER15 Revisited
When waves move in a medium, the medium oscillates in place. No material is 
transported from one location to another; it is the disturbance that moves. Unlike 
with particles, when two waves pass through the same region at the same time, the 
individual disturbances are added together. Afterward, each wave retains its own 
identity.

amplitude The maximum distance from the equilibrium posi-
tion that occurs in periodic motion.

antinode One of the positions in a standing-wave or interfer-
ence pattern where there is maximum movement; that is, the 
amplitude is a maximum.

crest The peak of a wave disturbance.

cycle One complete repetition of a periodic motion. It may 
start anyplace in the motion.

diffraction The spreading of waves passing through an open-
ing or around a barrier.

displacement In wave (or oscillatory) motion, the distance of 
the disturbance (or object) from its equilibrium position.

equilibrium position A position where the net force is zero.

frequency The number of times a periodic motion repeats in 
a unit of time. It is equal to the inverse of the period.

fundamental frequency The lowest resonant frequency for 
an oscillating system.

harmonic A frequency that is a whole-number multiple of the 
fundamental frequency.

in phase Describes two or more waves with the same wave-
length and frequency that have their crests lined up.

interference The superposition of waves.

longitudinal wave A wave in which the vibrations of the 
medium are parallel to the direction the wave is moving.

node One of the positions in a standing-wave or interference 
pattern where there is no movement; that is, the amplitude is zero.

oscillation A vibration about an equilibrium position or 
shape.

period The shortest length of time it takes a periodic motion 
to repeat. It is equal to the inverse of the frequency.

periodic wave A wave in which all the pulses have the same 
size and shape. The wave pattern repeats itself over a distance 
of one wavelength and over a time of one period.

Key Terms
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resonance A large increase in the amplitude of a vibration 
when a force is applied at a natural frequency of the medium or 
object.

spring constant The amount of force required to stretch a 
spring by one unit of length. The spring constant is measured in 
newtons per meter.

standing wave The interference pattern produced by two 
waves of equal amplitude and frequency traveling in opposite 
directions. The pattern is characterized by alternating nodal and 
antinodal regions.

superposition The combining of two or more waves at a loca-
tion in space.

transverse wave A wave in which the vibrations of the 
medium are perpendicular to the direction the wave is moving.

trough A valley of a wave disturbance.

vibration An oscillation about an equilibrium position or 
shape.

wave The movement of energy from one place to another 
without any accompanying matter.

wavelength The shortest repetition length for a periodic 
wave. For example, it is the distance from crest to crest or 
trough to trough.

Questions and exercises are paired so that most odd-numbered are followed by a similar even-numbered.

Blue-numbered questions and exercises are answered in Appendix B.

 indicates more challenging questions and exercises.

  Many Conceptual Questions and Exercises for this chapter may be assigned online at WebAssign.

Conceptual Questions

 1. If the net force on a mass oscillating at the end of a verti-

cal spring is zero at the equilibrium point, why doesn’t 

the mass stop there?

 2. If the restoring force on a pendulum is zero when it is 

vertical, why doesn’t it quit swinging at this point?

 3. A mass is oscillating up and down on a vertical spring. 

When the mass is above the equilibrium point and mov-

ing downward, in what direction does the net force on 

the mass act? When the mass is above the equilibrium 

point and moving upward, what is the direction of the 

net force on the mass? Explain.

 4. A mass is oscillating up and down on a vertical spring. 

When the mass is below the equilibrium point and mov-

ing downward, what is the direction of its acceleration? Is 

the mass speeding up or slowing down? Explain.

 5. A mass is oscillating up and down on a vertical spring. 

If the mass is increased, will the period of oscillation 

increase, decrease, or stay the same? Will the frequency 

increase, decrease, or stay the same? Explain.

 6. A grandfather clock (with a pendulum) keeps perfect 

time on Earth. If you were to transport this clock to the 

Moon, would its period of oscillation increase, decrease, 

or stay the same? Would its frequency increase, decrease, 

or stay the same? Explain.

 7. You hang a 1-kilogram block from a spring and find that 

the spring stretches 15 centimeters. What mass would you 

need to stretch the spring 45 centimeters?

 8. Which spring would you expect to have the greater 

spring constant, the one in the suspension of your Chevy 

or the one in your watch? Why?

 9. Assume that you pull the mass on a spring 1 centimeter 

from the equilibrium position, let go, and measure the 

period of the oscillation. Would you expect the period to 

be larger, the same, or smaller if you pulled the mass 2 

centimeters from the equilibrium position? Why?

 10. The amplitude of a real pendulum decreases because of 

frictional forces. How does the period of this real pendu-

lum change?

 11. What is the period of the hand on a clock that measures 

the seconds? What is its frequency?

 12. What is the period of the hand on a clock that measures 

the minutes? What is its frequency?

 13. Suppose your grandfather clock runs too fast. If the 

mass on the pendulum can be moved up or down, which 

way would you move it to adjust the clock? Explain your 

reasoning.

14.  How does the natural frequency of a swing change when 

you move from sitting down to standing up?
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 15. You find that the exhaust system on your 1979 Chrysler 

Cordoba tends to rattle loudly when the tachometer, 

which measures the engine’s frequency, reads 2000 rpm. 

It is relatively quiet at frequencies above or below 2000 

rpm. Use the concept of resonance to explain this.

 16. Why do soldiers “break step” before crossing a suspension 

bridge?

 17. You hold one end of a spring in your hand and hang 

a block from the other end. After lifting the block up 

slightly and releasing it, you find that it oscillates up and 

down at a frequency of 2 hertz. At which of the following 

frequencies could you jiggle your hand up and down and 

produce resonance: 5 hertz, 4 hertz, 1.5 hertz, 1 hertz, or 

0.5 hertz?

 18. You stand to the side of the low point of a child’s swing 

and always push the child in the same direction. Which of 

the following multiples of the fundamental frequency will 

not produce resonance: 13, 
1
2, 1, or 2?

 19. When you yell at your friend, are the air molecules that 

strike his ear the same ones that were in your lungs? 

Explain.

 20. What is being transported along a clothesline when a 

wave moves from one end to the other?

 21. Sonar devices use underwater sound to explore the ocean 

floor. Would you expect sonar to be a longitudinal or a 

transverse wave? Explain.

 22. You fasten one end of a long spring to the base of a wall 

and stretch it out along the floor, holding the other 

end in your hand. Describe how you would generate a 

transverse pulse on the spring. Describe how you would 

generate a longitudinal pulse on the spring.

 23. Is it possible for a shout to overtake a whisper? Explain.

 24. You generate a small transverse pulse on a long spring 

stretched between a doorknob and your hand. How 

could you generate a second pulse that would overtake 

the first pulse?

 25. Which one or more of the following properties affect 

the speed of waves along a rope: amplitude of the pulse, 

shape of the pulse, tension in the rope, or the mass per 

unit length of the rope? Why?

 26. You move your hand up and down to send a pulse along 

a long spring stretched between a doorknob and your 

hand. Which of the following would generate a slower-

traveling pulse: Moving your hand the same distance as 

before, but more slowly; moving your hand a smaller 

distance at the same speed as before; or moving closer to 

the doorknob to decrease the tension in the spring?

 27. You send a pulse of amplitude 5 centimeters down the 

right side of a spring. A moment later you send an identi-

cal pulse on the same side. The first pulse reflects from 

the fixed end and returns along the spring. When the 

reflected pulse meets the second pulse, will the resulting 

amplitude be less than, equal to, or greater than 5 centi-

meters? Explain your reasoning.

 28. Imagine that the string in Figure 15-14 is tied to the pole 

with a loose loop such that the end is free to move up 

and down. A pulse of amplitude 10 centimeters is sent 

down the top of the string, and a moment later a second 

identical pulse is sent, also on the top. The first pulse 

reflects from the free boundary and returns along the 

string. When the reflected pulse meets the second pulse, 

will the resulting amplitude be less than, equal to, or 

greater than 10 centimeters? Explain your reasoning.

 29. The pulse in the following figure is traveling on a string 

to the right toward a fixed end. Draw the shape of the 

pulse after it reflects from the boundary.

 30. A pulse in the shape of a crest is sent from left to right 

along a stretched rope. A trough travels in the opposite 

direction so that the pulses meet in the middle of the 

rope. Would you expect to observe a crest or a trough 

arrive at the right-hand end of the rope? Explain.

 31. If shapes (a) and (b) in the following figure correspond 

to idealized wave pulses on a rope, what shape is pro-

duced when they completely overlap?

Sound sent
downward
from ship

Sound
reflected
from
sea floor

(a)

(b)

(c)
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 32. Repeat Question 31 for shapes (a) and (c).

 33. Which of the following properties are meaningful for 

periodic waves but not for single pulses: frequency, wave-

length, speed, amplitude?

 34. In the following list of properties of periodic waves, which 

one is independent of the others: frequency, wavelength, 

speed, amplitude?

 35. Two waves have the same speed but one has twice the fre-

quency. Which wave has the longer wavelength? Explain.

 36. If the frequency of a periodic wave is cut in half while 

the speed remains the same, what happens to the 

wavelength?

 37. If the speed of a periodic wave doubles while the period 

remains the same, what happens to the wavelength?

 38. What happens to the wavelength of a periodic wave if 

both the speed of the wave and the frequency are cut in 

half?

39.  Travelers spaced 10 feet apart are all walking at 3 mph 

relative to a moving sidewalk. When the moving sidewalk 

ends, they continue to walk at 3 mph. An observer stand-

ing next to the moving sidewalk notes that the travel-

ers are passing by at a frequency of 1 hertz. A second 

observer stands just beyond the end of the moving side-

walk and notes the frequency at which the travelers pass. 

Would this frequency be greater than, equal to, or less 

than 1 hertz? Is the spacing between the travelers after 

leaving the moving sidewalk greater than, equal to, or less 

than 10 feet? Explain.

40.  A waterproof electric buzzer has a membrane that 

vibrates at a constant frequency of 440 hertz. The buzzer 

is placed in a bucket of water. Knowing that the speed 

of sound is much greater in water than in air, will the 

frequency of the sound heard in the air be greater than, 

equal to, or less than 440 hertz? Will the wavelength of 

the sound in air be greater than, equal to, or less than 

what it was in the water? Explain. (Hint: Review Question 

39 and think of the travelers as the wave crests.)

 41. Draw a diagram to represent the standing-wave pattern 

for the third harmonic of a rope fixed at both ends. How 

many antinodes are there?

 42. Draw a diagram to represent the standing-wave pattern 

for the fourth harmonic of a rope fixed at both ends. 

How many nodes are there?

 43. How much higher is the frequency of the fifth harmonic 

on a rope than the fundamental frequency?

 44. How much higher is the frequency of the sixth harmonic 

on a rope than that of the second?

 45. How many antinodes are there when a rope fixed at both 

ends vibrates in its third harmonic?

 46. How many nodes are there when a rope fixed at both 

ends vibrates in its fourth harmonic?

 47. Standing waves can be established on a rope that is fixed 

on one end but free to slide up and down a pole on the 

other. The fixed end remains a node, while the free end 

must be an antinode. Draw diagrams to represent the 

standing-wave patterns for the two lowest frequencies.

 48. How does the fundamental wavelength of standing waves 

on a string with one end fixed and the other free com-

pare to the fundamental wavelength if the same string is 

held with both ends fixed?

 49. How does the wavelength of the fourth harmonic on a 

rope with both ends fixed compare with the length of the 

rope?

 50. How does the wavelength of the fourth harmonic on a 

rope with both ends fixed compare with that of the sec-

ond harmonic?

 51. A longitudinal standing wave can be established in a long 

aluminum rod by stroking it with rosin on your fingers. If 

the rod is held tightly at its midpoint, what is the wave-

length of the fundamental standing wave? Assume that 

there are antinodes at each end of the rod and a node 

where the rod is held.

 52. What is the wavelength of the fundamental standing wave 

for the rod in Question 51 if it is held midway between 

the center and one end? Will the resulting pitch be 

higher or lower than when the rod was held at its mid-

point? Explain.

 53. Two point sources produce waves of the same wavelength 

and are in phase. At a point midway between the sources, 

would you expect to find a node or an antinode? Explain.

 54. Two point sources produce waves of the same wavelength 

and are completely out of phase (that is, one produces a 

crest at the same time as the other produces a trough). At 

a point midway between the sources, would you expect to 

find a node or an antinode? Why?
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55.  What happens to the spacing of the antinodal lines in 

an interference pattern when the two sources are moved 

farther apart? Explain.

56.  As you increase the frequency, what happens to the spac-

ing of the nodal lines in an interference pattern pro-

duced by two sources? Explain.

 57. An interference pattern is produced in a ripple tank. As 

the two sources are brought closer together, does the 

separation of the locations of maximum amplitude along 

the far edge of the tank decrease, increase, or remain the 

same? Why?

58.  As the frequency of the two sources forming an interfer-

ence pattern in a ripple tank increases, does the separa-

tion of the locations of minimum amplitude along the far 

edge of the tank increase, decrease, or remain the same? 

Why?

59.  What happens to the spacing of the antinodal lines in an 

interference pattern when the two slits are moved farther 

apart? Explain.

 60. As you increase the frequency, what happens to the spac-

ing of the nodal lines in a diffraction pattern? Explain.

Exercises

 61. If a mass on a spring takes 6 s to complete two cycles, 

what is its period?

 62. If a mass on a spring has a frequency of 4 Hz, what is its 

period?

 63. A Foucault pendulum with a length of 9 m has a period 

of 6 s. What is its frequency?

 64. A mass on a spring bobs up and down over a distance of 

30 cm from the top to the bottom of its path twice each 

second. What are its period and amplitude?

 65. A spring hanging from the ceiling has an unstretched 

length of 80 cm. A mass is then suspended at rest from 

the spring, causing its length to increase to 89 cm. The 

mass is pulled down an additional 3 cm and released. 

What is the amplitude of the resulting oscillation?

 66. A mass oscillates up and down on a vertical spring with 

an amplitude of 4 cm and a period of 2 s. What total 

distance does the mass travel in 10 s?

 67. What is the period of a 0.4-kg mass suspended from a 

spring with a spring constant of 40 N/m?

 68. A boy with a mass of 50 kg is hanging from a spring with 

a spring constant of 200 N/m. With what frequency does 

the boy bounce up and down?

 69. By what factor would you have to increase the mass to 

double the period for a mass on a spring?

 70. By what factor would you have to increase the spring 

constant to triple the frequency for a mass on a spring?

 71. A pendulum has a length of 5 m. What is its period?

 72. A girl with a mass of 40 kg is swinging from a rope with a 

length of 2.5 m. What is the frequency of her swinging?

73.  The highly idealized wave pulses shown in the figure 

below at a time equal to zero have the same amplitudes 

and travel at 1 cm/s. Draw the shape of the rope at 2, 4, 

5, and 8 s.

74.  Work Exercise 73 but change the rectangular pulse from 

a crest to a trough.

 75. A train consisting of identical 10-m boxcars passes you 

such that 25 boxcars pass you each minute. Find the 

speed of the train.
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 76. You observe that 25 crests of a water wave pass you each 

minute. If the wavelength is 10 m, what is the speed of 

the wave?

 77. A periodic wave on a string has a wavelength of 25 cm 

and a frequency of 3 Hz. What is the speed of the wave?

 78. If the breakers at a beach are separated by 5 m and hit 

shore with a frequency of 0.3 Hz, at what speed are they 

traveling?

 79. What is the distance between adjacent crests of ocean 

waves that have a frequency of 0.2 Hz if the waves have a 

speed of 3 m/s?

 80. Sound waves in iron have a speed of about 5100 m/s. 

If the waves have a frequency of 400 Hz, what is their 

wavelength?

 81. For sound waves, which travel at 343 m/s in air at room 

temperature, what frequency corresponds to a wave-

length of 1 m?

 82. What is the period of waves on a rope if their wavelength 

is 0.8 m and their speed is 2 m/s?

83.  A rope is tied between two posts separated by 3 m. What 

possible wavelengths will produce standing waves on the 

rope?

84.  A 3-m-long rope is tied to a thin string so that one end is 

essentially free. What possible wavelengths will produce 

standing waves on this rope?

85.  What is the fundamental frequency on a 6-m rope that is 

tied at both ends if the speed of the waves is 18 m/s?

86.  Tweety Bird hops up and down at a frequency of 0.5 Hz 

on a power line at the midpoint between the poles, which 

are separated by 20 m. Assuming Tweety is exciting the 

fundamental standing wave, find the speed of transverse 

waves on the power line.




